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A friend who loves mathematical puzzles once asked me, “What is the next number
in the sequence 0, 10, 1110, 3110, 132110, 13123110,...7?”

My answer was 23124110, and the story might have ended there; but, though I do
not know why, I continued: 1413223110, 1423224110, 2413323110, 1433223110,
1433223110, and then the sequence is constant from this term on. (Perhaps you have
noticed that each term of the sequence is obtained from the previous one by
counting the number of occurrences of each digit from 9 down to 0, catenating this
count with the digit, and joining these numeric strings to form the new term.) Since
this result was surprising, I tried other initial values, and I always found that the
resulting sequence was ultimately periodic. A conjecture was thus born. This paper
is a statement of some of my thoughts on the matter.

228 THE COLLEGE MATHEMATICS JOURNAL




As it happens, my friend’s sequence is a generalization of a sequence used by
Douglas Hofstadter [2, pp. 389-390] to solve a delightful puzzle invented by
Raphael Robinson. The puzzle is to fill in the blanks in the sentence below so that
the sentence is true.

In this sentehce, the number of occurrences of 0 is ,of 11is ,of 2
is ___,of3is ,of 41s ,of 51s ,of 61s ,of 71s :
of 8 is ,of 91is =

In studying these peculiar sequences, we shall find the (only two) solutions of
Robinson’s puzzle. (See Section 4 below, Also see [4] for some related puzzles and
their solutions and [3, p. 7, prob. 6] for an interesting related problem.)

1. First Theoretical Study

We shall designate any one of our sequences by the symbol S, and s, will denote
the nth term (or number) of the sequence. The initial term (s,) may be chosen
arbitrarily, after which the terms are formed as follows:

Sn = "39(”)9/“8(”)8/ < fag(n)0,

where «,(n) is the number of occurrences of the digit i in 5,_,, with the agreement
that the ith place is left empty if @, (n)=0. (The a,(n) will be called the
“coefficients™ of the term s,.) Let a, be the maximum of the a,(n). Our aim is to
show that the a, are bounded, and to find an economical upper bound for
sufficiently large n.

Suppose that a, has d digits, where 4 > 2. Then each a,(k) has at most 4 digits,
and there are at most 104 digits in all of the a,(k) together. Even if all of these
digits are the same (the worst case for our argument), there can be no more than
10d + 1 occurrences of any given digit in the term s, (104 among the coefficients,
plus one for the indexing digit of the same kind). Thus, no coefficient of s, , is
larger than 104 + 1. Since 104+ 1 < 109~ ! when 4 > 2, it follows that no coefficient
of s,,, has more than 4 —1 digits, and, therefore, «,,; has no more than 4 -1
digits.

Repeating the above argument, we see that a term s,, must eventually occur for
which «,, has at most two digits. Then each a,(#} has at most two digits, and there
are at most 20 digits in all of the a,(m) together. Even if all of these digits are the
same, there can be no more than 21 occurrences of any given digit in the term s,
Thus, no coefficient of s, , is larger than 2]. Repetition of the last argument shows
that, for all n > m, a, < 21.

I have demonstrated that for any S there is an N such that all of the «, for n = N
are bounded by 21. It follows that, from this point on, the terms {s,} can have at
most 22! different values. Eventually, a term must be repeated, and then all
subsequent terms will repeat previous ones, since the entire future of § is deter-
mined by any single term. Consequently, any S is ultimately periodic, and the
period does not exceed 22'°. Naturally, we would like to sharpen our estimate of the
lengths of possible periods. To this end, let us gather some experimental evidence by
computation.

VOL. 21, NO. 3, MAY 1990 229




2. Numerical Experimentation

For this we build some software that gives the terms of the sequence and the period,
with the input being the initial term. If you would like to do it yourself, I think that
you will find it helpful to have a representation of terms that allows easy separation
of the digits. One way might be to represent each term as a string of digits. Then
you will need a transforming procedure that can inventory the digits of an input
term and produce the successor term as output. You will also need a way to store
the terms as they are produced; an array (of strings, if you are using a string
representation) seems simplest. Now write a program to accept an initial term,
compute successive terms, store them, and check whether each new term is equal to
some previous one,

When we use such software, we find that, for initial values from 0 through 39, the
sequence is ultimately constant. For an initial value of 40, we obtain

40, 14/10, 14,21 /10, 14/12/31 /10, 14 /13 /12 /41 /10, 24 /13 /12 /51 /10,
15/14,/13/22/41/10, 15 /24/13 /22 /51 /10, 25 /14 /13 /32 /41 /10,
15/24/23/22/41/10,15/24 /13 /42/31 /10, 15 /24,/23 /22 /41 /10,

after which the sequence repeats with period two. For an initial value of 50, we find
a sequence that is ultimately periodic with period three. Try as hard as we might, we
find no (ultimate) periods other than one, two, and three. This fact leads us to
conjecture that these are the only possible periods. I shall call this “Lehning’s
Conjecture,” as my wife did at the time when this engrossing sequence disturbed our
peaceful life so much.

3. Proof by Computer

To prove this conjecture, we might check each of the finitely many cases resulting
from the analysis of Section 1. It would be easy to write a computer program for
this purpose, but it would be a mistake to expect it to complete its task in a
reasonable amount of time, because 22'° is such a large number. (If 10,000 cases
could be tested each second, it would take eighty-four years to finish the job!) So we
want to reduce the number of cases to be checked. To accomplish this reduction, I
shall use the following arguments repeatedly.

Argument 1. Because every sequence § is ultimately periodic, it is sufficient to
consider initial terms that belong to cyclic tails. I shall use the word “cycle” to
designate a cyclic tail of a sequence, and a cycle of period one will be called a “fixed
peint.”

Argument 2. If a term s, has its ith coefficient (a,(n)) different from zero, all
subsequent terms will also have this coefficient (a,(m) for m > n) different from
zero. In words, term generation cannot annihilate any coefficient. In a cycle, term
generation also cannot create any new (nonzero) coefficients, since new ones cannot
subsequently be destroyed, and the terms repeat.

Argument 3. For any S, ¥,a,(n + 1) is equal to the total number of digits in s,. I
established in Section 1 that, in a cycle, «, < 21 for all »; hence, each a,(n) has no
more than two digits, which means that s, has at most thirty digits. Thus,
Y,a;(n+1) <30 in a cycle. More generally, if we have succeeded in establishing
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that not more than k coefficients (of any term in a cycle) can be two-digit numbers,
with the remaining 10 — k coefficients being at most one-digit numbers, it then
follows that the sum of the coefficients of any term in a cycle is at most 3k +
210 —k)Y=20+k.

Argument 4. Suppose we have established that, for some term s, in a cycle, there
are at least r occurrences of each of m different digits among the coefficients a,(n)
of s,. Then, the sum of the coefficients that contain these digits must be at least
r(1+2+ --- +m)=rm(m+1)/2. This is clear if none of the m digits is zero and
if no two (of the rm) digits occur in the same a,;(n). If one of the m digits is zero,
any a,(n) that contains it must be at least 10, because, by agreement, we leave the
ith place blank rather than write “0 i.” If two or more (of the rm) digits occur in
the same a,(n), then that a,(n) is greater than the sum of those digits, because of
the weight placed upon one (or more) of them by positional notation.

Reducing the number of cases. For any term s, in a cycle, each «,(n) has no
more than two digits, and Z,a;(n) < 30 (Argument 3).

Suppose that, for some i > 2, a,(n) has two digits. Then the digit i occurs at least
nine times among the a,(# — 1)’s. It cannot occur twice in any a ;(n—1), because if
it did that a,(n —1) would be at least 22, and 22 plus at least 14 more for the
remaining seven #’s would make the sum of the a A(n—1)s exceed 30, the upper
bound established above. Thus, at least nine different a ;(n —1)’s contain the digit i.
Let j, ji,..., Jo be the indices of these occurrences. Looking at the term s, _,, we
see that each of the digits j, to j, must occur at least / — 1 times in the a,(n — 2)’s.
Thus, the sum of the a,(n — 2)’s that contain the i — 1 copies of j, through j, must
be atleast (2 — 1)1+ 2+ --- +9) = 45, by Argument 4. However, L, a,(n — 2) < 30
if 5,_, is in a cycle. This contradiction shows that, for all s, in a cycle, and for all
i>2, a,(n)is (at most) a one-digit number.

From the fact that the only possible two-digit a,(n)’s are a,(n) and a,(n), we
conclude that, for s, in a cycle, ay(n) <3, and, hence, ay(n) has (at most) one
digit. It follows (from Argument 3) that ¥.a,(n + 1) <21, and this will be true for
all terms in a cycle. Since a,(n) is the only possible two-digit coefficient, we
conclude that (in a cycle), a,(n) < 12. The number of cases for computer analysis
has been reduced to at most 10% X 13 X 4 (10 possibilities for each of a, through a,
13 possibilities for a,, and 4 possibilities for a,). This count will presently be
reduced much more, but first I shall analyze the cases for which a,(n) > 9.

The number of 1's. If g(n)>9 for some term in a cycle, there are three
possibilities.

(1) If a;(n)=12, then 5, , must be 19/18/17,/16/15/14/13 /12 /111 /10. The
evolution of S is

19/18/17/16/15/14/13/12/121/10,  19/18/17/16/15/14 /13 /22 /111 /10,
19/18,/17 /16 /15 /14 /13 /22 /111 /10,

and from this point on, S is a constant sequence. While we have found a fixed point
that will be of subsequent use, we have also shown that @;(n) =12 cannot happen
in a cycle.
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(2) If a,(n) =11, let us consider two subcases.

(a) If a;(n—1)# 11, then every a,(n —1) =1 for i # 1, and a,(n — 1) is either 1
or 10. (The case of a,(n — 1) = 12 has been covered by the analysis of the preceding
paragraph.) Thus, there are two possibilities for S beginning with the (n— 1)st
term:

19/18/17/16,/15/14/13/12/11/10,  19/18/17/16/15/14/13 /12,/111 /10,
19/18/17/16 /15 /14,/13 /12 /121 /10,

leading to the fixed point of (1) above; or

19/18/17/16/15/14/13/12/101 /10, 19/18/17/16/15/14/13 /12 /111 /20,
19/18,/17/16 /15 /14 /13 /22 /111 /10,

which is again the fixed point of (1).

(b) If a,(n — 1) = 11, then exactly eight of the a,(n — 1)’s (i # 1) are equal to 1. If
the other a;(n — 1) is zero (nine cases), the (n — 1)st term is one of the nine fixed
points exemplified by 19/18/16/15/14,/13 /12 /111 /10 (with a,(n — 1) = 0). If the
other a,(n—1) is not zero, let j be its value, with ;j>2. Then a;,(n)=2,
a,(n) =11, and all other a;(n)’s are equal to 1. Hence, the term s, , is

19/18/17/16/15/14/13 /22 /111 /10,

which is the fixed point found in (1) above.

(3) If a,(n) =10, we may suppose that a,(n — 1) < 10, else we are brought back
to one of the previous cases, with n replaced by n — 1. We can then divide this case
into three subcases.

(a) Clearly, a,(n—1) cannot be zero, so the first subcase to consider is
ay(n —1)=1. Then nine of the a,(n — 1)’s (including a,(n — 1)) are 1’s. By Argu-
ment 2, at least nine of the a (n—2)’s are nonzero; since at most one of them
can be 1, eight (or more) of them must be at least 2, in which case at least eight
different nonzero values appear among the a,(» — 3)’s. But, this would imply that
Liap(n—3)21+2+ .. +8=136, which contradicts the fact that ¥,a,(n) < 21
for all terms in a cycle. Thus, this subcase cannot arise.

(b) If 2<a,(n—1) <9, then a,(n—1)=1 for each i # 1. The term s, thus has
eight a,’s equal to 1, one (a,) equal to 10, and one (the one whose index is
ay(n — 1)) equal to 2. It follows that s, ., is 19,/18/17 /16 /15 /14 /13 /22 /101 /20,
and the evolution of the sequence is

19/18/17/16/15/14/13/32/91 /20, 29/18/17/16/15/14,/23 /22 /81 /10,
19/28/17/16/15/14/13/42 /71 /10, 19/18,/27/16,/15,/24,/13 /22 /81 /10,
19/28,/17/16 /15 /14/13 /42 /71 /10,

at which point we have reached a cycle of period two in which all coefficients are
smaller than 10. (This cycle will be rediscovered in Section 5.) Since the term s, is
not itself in the cycle, this subcase also cannot arise.

(¢) The final case to be considered is the one for which a,(n — 1) = 10. We may
suppose that a,(n —2)=10 also, else we would be brought back to one of the
previous cases. Since 0 occurs in a coefficient of s,_,, a,(n — 1) is nonzero, whence
ag(n — 2) is also nonzero by Argument 2. Thus, a,(n — 1) is at least 2, and it can’t
be larger than 2 because at most one coefficient of s,_, has more than one digit.
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Then s,_, has the form
19/18,/17 /16 /15 /14 /13 /12 /101 /20,

and s, is the same as the term s, ., in subcase (3)(b) above. Thus, the same cycle of
period two ensues, and s, itself is not in the cycle.

Conclusions. Except for the ten fixed points given in cases (1) and (2)b) above,
a;,(n)y<9 for all / (and all ») if we are in a cycle. From Argument 3, we conclude
that ¥.a,(n) < 20 for all s, in a cycle other than these ten fixed points.

Further reduction in the number of cases. From now on, we assume that
a;(n) <9 for each / and #, since the cases for which a;(#n) > 10 have been disposed
of in the preceding section. Suppose that, for a given i > 2, a,(n) = k. Then there
are (at least) k—1 occurrences of the digit i/ among the a,(n—1)s. Let
J1s Jas+-+s Ji 1 be the indices of these occurrences. Looking at the term s,_,, we see
that each of the digits j, to j,_; must occur at least i—1 times among the
a,(n— 2)'s. Therefore, the sum of the a,(n — 2Y’s that contain the i — 1 copies of j,
through j, _, must be atleast (i — 1)1 +2 + --- +k — 1) by Argument 4. It follows
(from the conclusions of the previous paragraph) that (i — Dk(k—1)/2 < 20, or,
equivalently, k(k —1)<40/(i—1). Therefore, ay(n) <2, ag(n)<2, a,(n)<3,
ag(n)y<3, as(n)<3, auny<4d, a;(n)<5, and a,(r)<6. By assumption,
a;(n) < 9. Since zero cannot occur in any coefficient, a,(n) <1 for all cycles that
we are now considering.

Our analysis has therefore reduced the number of cases to be tested to 3 X 3 X
4X4X4X5X6XTX10xX2=2419,200. The restriction that ¥,a,(n) <20 fur-
ther reduces the number of cases to 1,500,043 (by actual count), which is a
reasonable number for even a microcomputer to check.

A program to check all cases. A program to test all of these cases needs two
components: one to produce the 1,500,043 initial terms of sequences to be tested,
and a second to check each sequence. The first component is not difficult to write, so
I shall limit my explanations to the second component.

In order to check a sequence S, we commence with s, and use the transforming
procedure (of our earlier program) a certain number (N) of times in order to reach
the cyclic tail of S. Rather than trying to determine the value of N for each S, I
have found experimentally that the constant N = 6 suffices for all S, provided that
certain other tests (to be described presently) are made on candidate sequences.
After N transformations, we transform at most three more times, and we check
whether 5, Sy, OF Sy, is equal to s,.

One of the tests that should be made after each transformation is that each of the
coefficients a,(n) still conforms to the limits determined in the preceding section.
For example, the initial term 19 /18 /17 /16 /15 /14 /13 /12 /11 /10 would transform
to a term in which a4, is 11, and this should not be allowed to happen. Any sequence
that leads to an out-of-range term should be discarded.

The other test that should be made is that each transformed term must have the
same sum-of-coefficients as the term from which it arose. The reason for this is that
the sum of the coefficients is the number of digits in the preceding term, and this
number neither expands nor contracts in any cycle in which all coefficients are
one-digit numbers. (Refer to Argument 2.)
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To make your program run faster, use a simpler representation of terms than was
possible in Section 2. An array of eleven bytes is convenient: ten bytes to store the
values of a, through a,, and an eleventh byte to hold the sum of these ten
coefficients. The fact that all a,(n)’s are one-digit numbers greatly simplifies both
the representation of terms and the transformation procedure.

Running the program. When you run the program described above, you may
find “Lehning’s theorem is true” on the screen of your computer after a half-hour (if
your computer is a fast one). What is your opinion of this proof? Is it a real proof
for you? It is for me!

Once I knew the theorem to be true, I modified the program so that it discarded
all initial terms that were not in a cycle, and I added counters to count how many
different cycles there are of each of the possible periods. The result was:

99 fixed points
31 cycles of period 2 (each one counted twice, of course)
10 cycles of period 3 (each one counted three times).

The ten fixed points found in the analysis of the subsection “The number of 1’s”
bring the total number of fixed points to 109. Because there were so few different
endings of sequences, and just for the pleasure of it, I looked for an analytic proof
of Lehning’s theorem. In Section 5, I outline my results. Before I do that, I wish to
use the results obtained so far to solve Robinson’s puzzle.

4. Robinson’s Puzzle

Robinson’s puzzle (stated in the introduction) is to fill in the blanks in a certain
self-inventorying sentence so as to make the sentence true. Hofstadter suggests the
following method (which he calls “Robinsonizing”) of solving this puzzle, Fill in the
blanks with arbitrary numbers to form the initial term of a sequence, and then
transform each term into the next by the method defined at the beginning of this
paper. If you find a fixed point, that fixed point is a solution (and, conversely, every
solution is a fixed point of such a sequence).

In Section 3 we found the fixed point 19/18/17/16/15/14/13 /22 /111 /10 that
employs all ten of the digits 0~9. The computer program lists just one other fixed
point that uses all ten digits: 19/18,/27/16 /15/14,/23 /32 /71 /10. Thus, these are
the only two solutions of Robinson’s puzzle. Moreover, the program lists just one
cycle of period two that involves all of the digits, and that is the cycle
19/18,/27/16/15/24/13 /22 /81 /10, 19/28 /17/16/15/14/13 /42 /71 /10. This
cycle would solve the puzzle consisting of two sentences similar to the one of
Robinson’s puzzle, but with each sentence referring to the other. Finally, there is no
cycle of period three that involves all of the digits.

5. Outline of an Analytic Proof

From the analysis of Section 3, we may restrict our attention to cycles in which
a;(n) <9 for each i. We shall need a bit of notation:

I1(n) will represent the set of indices i for which a,(n) > 0. By Argument 2 of the
preceding section, I1(#n) is independent of n. In what follows, I1(n) will be
abbreviated to “I.”
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N1 will represent the number of indices in I. Equivalently, N1 is the number of
nonzero coefficients of s,,.

I2(n) will represent the set of indices / for which i # 1 and a,(n)> 1. This set
may depend upon », even in a cycle.

N2(n) will represent the number of indices in I2(n). Equivalently, N2(n) is the
number of coefficients (other than a,(#)) greater than 1.

Some basic formulas can now be established. From Argument 3 of the previous
section we conclude that

Y a,(n)=2N1. (1)

If i/ belongs to I, then s,_, has a,(n)—1 indices j for which a(n—1)=i
Summing the coefficients of s, , yields ¥;a,(n—1)=X,i(a,(n) —1). From this
last equation, together with (1) and the fact that we are in a cycle, we deduce that
Y,i(a;,—1)=2N1. From this equation and (1) we get Z,(i — 2)(q,— 1) =2N1 —
2YX,(a;—1)=2N1-2(2N1 — N1), whence

;(5—2)(:;!.—1):0. (2)

In (2), the term for which /=2 either does not appear (if a,=0) or is zero
(because i — 2 = 0). The term for which i = 0 does not appear (if a, = 0) or is zero
(if a,=1), since a, =<1 for the cycles that we are considering. If we assume that
a,(n) =0 for some term in a cycle, then (2) (along with the preceding two sentences)
implies that a,(n) is either 0 or 1 for each i = 3; a,(n) =1 for some i > 3 would
make a,(n + 1) > 0, in contradiction of Argument 2 of Section 3. Thus, if a,(n) =0,
we are left with the term a,(»)2, from which we deduce (using (1)) that a,(n)=2,
and we find

1 fixed point given by 22.

From now on we suppose that g, >0. If a,(n)>2, the number of a,(n)s
equal to 1 is N1 —N2(n)—1, so that a(n+1)=N1—- N2(n). Moreover,
2N1=1L,a,(n)=ay(n)+(N1—N2n)—1)+ Ly, a,(n). From these last two
equations we conclude:

If a(n)>2,then aj(n+1)=a(n)—1+ Y (a,(n)-2). (3)
I2(n)

Cycles with a constant number of 1’s. If g, is constant in a cycle, then a, > 2
(a, =1 is contradictory), so a,(n)=a,(n + 1) = N1 — N2(n) by the preceding para-
graph, and N2 is independent of n. From (3), ¥,5,,(a,(n)—2)=1, so one a,(n)
(for i # 1) is 3 and (N2 — 1) of them are equal to 2. We consider four subcases.

(a) If a,(n)=0, the digit 2 does not occur, so N2 =1. Then the a,(n)s are 3,
N1 =1 (the coefficient a,), and (N1 —2) I’s. If N1 — 1 + 3, the digit 2 occurs in
§,.1, which contradicts our assumption. Thus, N1 =4, and s, is of the form
33/31/(2), where the symbol (2} represents two substrings of the form 1; (with
each j differing from all of the displayed indices) embedded somewhere in the string

for s, ;. This term is a fixed point, and there are (g) = 28 choices for the substring
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{2). Thus we have found
28 fixed points of the form 33/31/(2}.
In the other three cases, we assume that a, is nonzero.

(b) If N1 —N2>4, then 1, 2, 3 and N1 — N2 belong to I. Therefore, s5,,, has
the form 2(N1 - N2)/23 /(N2)2 /(N1 — N2)1/{ N1 — 4), where the symbol (N1 —
4 represents N1 — 4 embedded substrings of the form 17. The (constant) number
of 1’s is therefore N1 — 3 as well as N1 — N2, It follows that N2 =3 and that s
is the fixed point 2(N1 - 3)/23/32/(N1— 3)1 /(N1 — 4). Thus we have

n+1

20 fixed points of the form 24 /23 /32 /41 /(3)

15 fixed points of the form 25,/23 /32 /51 /(4)

6 fixed points of the form 26,/23 /32 /61/({5)

1 fixed point given by 19/18 /27 /16 /15 /14 /23 /32 /71 /10.

() If N1 —N2=3, then s,,, has the form 33/(N2)2/31/(N1— 3). It follows
that N2 =2 and N1=35; so, s, is one of the

21 fixed points of the form 33,22 /31/(2}.

(d) If N1 -N2=2, then s,,, has the form 23 /(N2 + 1)2/21 /(N1 — 3). Thus,
N2=2, N1 =4, and s, is one of the

7 fixed points of the form 23 /32,21 /(1}.

We have found altogether 99 fixed points (with all a; < 9), and these are the same
as the ones found by my computer program.

Cycles with a nonconstant number of 1°s. Assume that 4, is not constant in a
cycle, and let » be such that 4,(n) is maximum and a,(n + 1) is not. Since a,(n) is
at least 2, it follows from (3) that a,(n + 1) > a,(n) — 1, and, therefore, a,(n + 1) =
a;(n) — 1. For this conclusion, the last term of (3) must be 0; so, we see that the
a;(n)'s (for i # 1) that are greater than 1 are all equal to 2. Let i;, i,,-- -, inaeny bE
the i’s (1) for which g,(n)=2. 1 have shown (just before (3)) that a,(n+ 1) =
N1 = N2(n); thus, a\(n) =N1— N2(n)+ 1. When we substitute these values in (2),
we get the equation #y +i, + - -+ +iyy,, = N1+ N2(a), which implies that N1+
N2n)=2+3+ - +(N2(n)+1)=N2(n)(N2(n)+ 3)/2, and, therefore, N1 —
N2n)+1=N2n)N2n)—1)/2+ 1. We consider four cases.

(a) If N2(n)= 3, the last inequality in the preceding paragraph implies that
N1—N2(n)+1is at least 4. Thus, 1, 2, and N1 —N2(n)+ 1 belong to {, and s, ,
has the form 2(N1 — N2(n) + 1)/(N2(n) + 1)2 /(N1 — N2(n))1/{N1 — 3). We de-
duce that a,(n+ 2)=N1-2, and this is not greater than N1 — N2(n) + 1, since
a,(n) is maximum. Hence, N2(n)= 3, and N1 = 6. We break this case down into
three subcases.

(1) If N1 =8, then 4 and (N1 — 3) belong to I, since (N1 —3) is a,(n+ 1) and 4
is a,(n +1). Then s, ,, is 2(N1—2)/1(N1 - 3)/14/42 /(N1 —3)1 /(N1 = 5), s, .,
is 1(N1—2)/2(N1-3)/24/22/(N1—-2)1/(N1—5), and s, ,=5,,;. We have
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found

10 cycles of period two of the form 26 /15,/14,/42 /51 /(3},
16,/25/24 /22 /61 /(3),

5 cycles of period two of the form 27/16/14/42 /61 /{45,
17/26/24/22 /71 /(4),

1 cycle of period two given by 19/28/17/16 /15 /14,/13 /42 /71 /10,
19/18,/27/16 /15 /24 /13 /22 /81 /10.

(i) If N1=7, then s, is 25/14,/42 /41 /(3). Since the number of 4’s in this
term is 3, 3 belongs to 1. Thus, s,,, is 25/14/13/42 /41 /(2), and, if we trace the
evolution of this term, we see that we have found

10 cycles of period three of the form 25,/14,/13 /42 /41 /(2),
15/34/13/22 /51 /(2),
25/14/23/22 /51 /(2.

(i) If N1 =6, s,,, is 24/13/42 /31 /(2}, and if we trace the evolution of this
term, we see that we have found

15 cycles of period two of the form 24 /13 /42 /31 /(2),
24/23/22 /41 /(2),

The 31 cycles of period two and 10 cycles of period three found in the above three
subcases are the same as those produced by the computer program.

(b) If N2(n) =2, the facts that a;(n) = N1 — N2(n) + 1 and a,(n) > 2 imply that
N12>3. If N1=3, then a,(n)=2, and all three coefficients of s, are equal to 2.
Then s, ,,=42/11/(1), and a,(n + 2) = 3, contradicting the maximality of a,(n).
The case N2(n)=2 and N1 > 3 also cannot occur in a cycle with a nonconstant
number of 1’s. To show this, we look at the following subcases. In each subcase, 1
display the term s,,, and leave it to you to show that the evolution of this term
leads to a cycle such that either s,,, is not in the cycle or the number of 1’s is
constant. (Also, in every case, the ultimate cycle is one of those that has already
been found.)

() If N1=28, s,,, is 2(N1 - 1)/1(N1 — 2)/1(N1 — 3)/14/13/32/
(NL-2)1/(N1-="T).(That N1—1, N1—2,3,2,and 1 arein [ is evident from the
previous discussions. The N1 — 3 and the 4 appear at later stages. The coefficients of
8,4+, are determined by the previous information and the fact that their sum is
2N1)

(i) If N1=7, 5,,, is 26/15/14/13 /32 /51 /(1}.

(iti) If N1 =6, s,,, is 25/14/13/32/41 /{1).

(iv) If N1=35, s5,,, 15 24/13/32 /31 /(1).

(v) If N1=4, 5,15 23/32/21 /(1).

(©) If N2(n)=1, then a,(n)=N1, and s,_, has N1 —1 coefficients that are
equal to 1. The other coefficient of s,_; must be N1 + 1, because the sum of the
coefficients of any term in a cycle (with all @;<9) is 2N1. Let j be such that
a;(n—1)=N1+ 1. Then, all N1 of the coefficients of s,_, are equal to j; since the
sum of the coefficients of s,_, is 2N1 (we are assuming that s5,_, is in the cycle,
too), it follows that j=2. Then the coefficients of s, , (also assumed to be in the
cycle) are all different and must sum to at least N1(N1 + 1)/2, as well as to 2N1.
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Thus, N1 <3. If N1=2, s, is 23/21, which is clearly not in a cycle, since s, ;
would be a longer string. If N1 =3, 5, is 24/31/(1}, which also is not in a cycle,
since s,,, would again be a longer string. Therefore, the case N 2(n)=1 cannot
arise.

(d) If N2(n)=0, a;(n)= N1+ 1.Then s5,_, has all (N1) of its coefficients equal
to 1, contrary to the fact that the sum of its coefficients must be 2 N1 if it is to be in
a cycle. Thus, this case also cannot arise.

6. Conclusions from the Two Proofs

Is the analytic proof “better” than the proof by computer? This question does not
have an obvious answer. The analytic proof confirms only what I had learned from
the computer runs, and, without the computer results, I might not have had the
courage to attempt an analytic proof. A conservative mathematician may say that
the computer proof is no proof at all, but, then, he or she must also say that the
four-color theorem is not really proved (see [1]).

What are the criteria for a better proof? We might answer as follows:

(i) A shorter proof is better.

(ii} A proof that requires less knowledge is better.

(iif) A proof that fosters a deeper understanding is better.
The criteria (i) and (ii) might lead us to say that the computer proof is better than
the analytic proof, while the criterion (iii) suggests that the analytic proof is the
better one. To support the latter view, in the next section I generalize the theorem to
other bases.

7. Other Bases

The definition of our sequences is meaningful in any base, b, greater than 1. For
example, in base 2, with the initial term 0, we obtain the sequence

0, 10, 11 /10, 111 /10, 1001 /10, 111 /110, 1011 /10, 1001 /100, 111 /1000, 1001 /110,

and the last term is a fixed point.

Obviously, the computer proof can work in only one base at a time, while the
analytic proof has at least a chance of working in every base. In fact, all of
the arguments of Sections 3 and 5 (with obvious modifications to accommodate the
base) are correct in all bases greater than 7. What we need, then, are:

(1) For b= 8, an argument like that of Section 1 to dispose of all cases in which
some a,’s may require three or more digits to represent them.

(2) Computer runs to settle the issue for all b < 7.

In fact, the argument of Section 1 is valid for any base 5 > 4. Merely replace the
“10” by “b” (and the “20” and “21” by 2b and 2b + 1, respectively), and observe
that bd+1<b? forall b>4andall d>2.If b> 8, the arguments of Sections 3
and 5 then suffice to establish Lehning’s theorem and to determine the forms of all
possible cycles.

If <7, it is easy to check all cases with a computer. Arguments similar to those
in Section 3 can be used to reduce the number of cases that need to be considered.
For example, only 36,548 initial terms need to be generated in base 7. For b =2, 4,
or 5, we find only fixed points. For b = 3, there are fixed points and one cycle .of
period three, but no cycle of period two. In base 6, we find fixed points and one
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cycle of period two. For =7, we find fixed points, cycles of period two, and one
cycle of period three.

Therefore, the theorem is true in any base. All sequences terminate in cycles of
periods

one, if b=2, 4, or 5,

one or three, if b= 3,

one or two, if b =6, and
one, two, or three, if b> 7,

As noted above, if b > 8, the forms of all possible cycles are given in Sections 3
and 5. It is interesting to note that this is also true for bases 4, 5, 6, and 7. The forms
of Sections 3 and 5 would predict seven fixed points in base 4, twelve fixed points in
base 5, nineteen fixed points and one cycle of period two in base 6, and twenty-nine
fixed points, three cycles of period two, and one cycle of period three in base 7, and
the computer results coincide exactly with these predictions (including the correct
number of each possible form). The only anomalies occur in bases 2 and 3, where
the forms of Sections 3 and 5 would predict one fixed point in base 2 and four fixed
points in base 3. These fixed points occur, but so do the following anomalous cycles:

1001 /110—a fixed point in base 2,
102 /21 /20, 101 /100, 22 /101 /100—three fixed points in base 3,
and 102,101 /10, 12 /111 /100, 12 /121 /20—a cycle of period three in base 3.

The theorem is still true for b = co. In this case, it is sufficient to prove that, for
any particular sequence S, the a,’s are bounded, and then to choose a base b greater
than this bound.
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