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DYNAMICS OF TYPICAL CONTINUOUS FUNCTIONS

HERVE LEHNING

(Communicated by Andrew Bruckner)

ABSTRACT. S.J. Agronsky, A. M. Bruckner, and M. Laczkovic have studied the
behaviour of the sequence (f"(x)) where f is the typical continuous function
from the closed unit interval I into itself and x the typical point of I. In
particular, they have proved that the typical limit set w(f, x) is a Cantor set
of Menger-Uryson dimension zero. Using mainly the Tietze extension theorem,
we have found a shorter proof of this result which applies to a more general
situation. As a matter of fact, we have replaced the closed unit interval by a
compact N-dimensional manifold and the Menger-Uryson dimension by the
Hausdorff one. We have also proved that, for the typical continuous function
f, the function x — w(f, x) is continuous at the typical point x . It follows
that the typical limit set is not a fractal and that, for the typical continuous
function f, the sequence (f"(x)) is not chaotic.

INTRODUCTION

From now onward, we set X to denote a compact manifold with boundary,
N to denote its dimension, and d to denote a metric on X such that X is
a second countable complete metric space (i.e., having a countable basis). If
B is a subset of X, we shall represent its interior by Int(B), its closure by
Clos(B) , its exterior (i.e., X — Clos(B)) by Ext(B), its boundary by 8B, and
its diameter by d(B).

K(X) will denote the set of compact subsets of X and dx the Hausdorff
metric on K(X) (see [5, p. 96]). Thus, K(X) is a metric space.

C(X) will denote the space of continuous functions from X into itself and
dy the metric of uniform convergence on C(X). Thus, C(X) is a complete
metric space. With the metric 6 = max(d,, d), C(X) x X is also a complete
metric space. If (f, x) € C(X) x X, we shall denote by w(f, x) the limit set
(i.e., the set of the limit points) of the sequence (f”(x)). Thus w is a function
from C(X)x X into K(X).

If E is a complete metric space, we shall call residual a subset of E which
contains a countable intersection of dense, open subsets. If P(x) is a property,
the sentences “for x typical in E, P(x)”, “if x is typical in E, P(x)”, and
“P(x) at the typical point x of E” will mean “there is a residual subset 4 of
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E such that, if x belongs to 4, then P(x)”. In the same situation, we may
also say that “P(x) is typical in E” or “P(x) is typical”.

LEMMAS

The proofs of our theorems rely on two lemmas which mainly use the Tietze
extension theorem (in a particular version, see [2, Corollary 1, p. 82]).

Lemmal. Let o >0, >0, andlet E, p betheset ofthose (f, x) € C(X)xX
such that there is a finite number of subsets (k;); verifying:

o d(k)) < B foreach i,

o o(f,x)cU;ki and Y ;d(ki)* < 1.
The set E, g contains an open, dense set in C(X) x X .

Proof. Let (f,a) € C(X) x X and ¢ > 0. Using the compactness of X, we
construct a finite cover of open sets of diameters strictly less than ¢ having a
closure homeomorphic to IV¥ where I is the closed unit interval.

Let p be the smallest positive integer such that there are an integer n < p and
an element V of the cover containing f?(a) and f"(a). Let m = p—n. This
property implies that the points a, f(a), f%(a), ..., f**™ !(a) are distinct.

Let 4 be a closed subset, B and C two open subsets, and y ¢ A such
that f(y) € B and y € C. Using the continuity of f at the point y, we can
construct a compact subset K homeomorphic to IV such that: KN4 =@,
KcC,yelnt(K), d(K)<e,and f(K)CB.

We use this property for 4 = {a, f(a), ..., " %)}, y = f*" a),
B =V,and C = X, and obtain a compact K,,,_;. Using it for 4 =
{a, f(a),..., " 3@)} UKpim-1,y = "™ 2%(a), B = Int(Kpym-2), and
C = X, we obtain K, ,,—». We continue in the same way (with the exception
of C =V for K,). Eventually, we have constructed a sequence of compacts
Ko, K1, ..., Knym—1 homeomorphic to IV such that:

a € Int(Ky);

d(K;) <e and f(K;) CInt(K;;) for 0<i<n+m-2;
KinK;j=2 for i #j;

K,cV and f(Kpym—1)CV.

Let p > 0 be small enough that mp> < 1 and p < . For each i, we
choose a compact k; with a non-empty interior included in Int(K;) such that
d(ki) < p and a point b; in Int(k;).

For each i, let n; > 0 be such that the ball centred at b; of radius #; is
included in Int(k;). Then, we define a function g in the following way:

For 0<i<n+m-2,weput g=0>b;;y on k; and g = f on 8K;. On
the one hand, g takes its values in K;,; which is homeomorphic to IV . On
the other hand, k; UOK; is a closed subset of K;. So, according to the Tietze
extension theorem (see [2, Corollary 1, p. 82]), g has a continuous extension
(which means that it still agrees with f on 6K; and with b;;; on k;) defined
on K; and taking its values in K; ;. As d(K;;1) <€, d[f(x), g(x)] < ¢ for
each x € K.

In the same way, we put g = b, on k,.,,—1 and g = f on 8K,.m—1, and
then we extend g on K,,,,_; into Clos(V).

We put g = f outside |J; K.

So, as g agrees with f on the boundaries of the K;, it follows that g is
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continuous on X . As d[f(x), g(x)] < ¢ for each x € X and the function
x — d[f(x), g(x)] is continuous on the compact X , we have d..(f, g) <e¢.

Let b = by and n = min#n;. As a and b are both in Ky, d(a,bd) < ¢.
Thus, we have defined (g, ) € C(X) x X such that J[(f, a), (g, b)]<e.

Let (h,c) € C(X) x X be such that d[(g, b), (h, ¢)] < n, that is to say,
dw(h, g)<n and d(c,b)< 7.

If x € ki, then g(x) = biy1, so d[biy1, h(x)] < n; thus d[bis1, h(x)] <
Ni+1, and so h(x) € ki, . Therefore, h(k;) C k;;, foreach 0<i<n+m-2.
For the same reason, A(k,ym—1) C kn .

As ¢ € kg, for | > n, the sequence (h/(c)) takes its values in k, U kyy U
-++Ukpym—1 which is a closed subset. Thus w(h, ¢) C k, Ukpy U - Ukpym—1 -
As mp* <1 and p< B, d(k;) < B foreach i and ) ,d(k;)* < 1. Therefore,
(h, c) belongs to E, z. So the ball of C(X) x X centred at (g, b) of radius
n is included in E, 4.

So any ball of C(X) x X (centred at (f, a) of radius ¢) contains a point
(g, b) which is the centre of a ball (of radius #) included in E, g, and the
result follows.

Lemma 2. Let U be an open set of X. Let Fy be the set of those (f, x) €
C(X) x X such that w(f, x) either contains no point of U or contains at least
two points of U. Then Fy contains an open, dense subset of C(X) x X .

Proof. Let (f,a) € C(X)x X and ¢ > 0. We begin the construction as in the
proof of Lemma 1. We obtain n and m as before. We shall distinguish two
cases:

(1) For each i suchthat n<i<n+m-1, fi(a) € Ext(U).

As Ext(U) is open, we can choose the K; for 0 <i < n+ m—1 such that
K; c Ext(U) for n < i <n+m-—1. We choose any p > 0 and then the
k; and the b;. As in the proof of Lemma 1, we obtain (g, b) € C(X) x X
and n > 0 such that J[(f, a), (g, b)] <e;and if (h, c) € C(X) x X verifies
ol(g, b), (h,c)l < n,then w(h,c) has no pointin U, so (h, c¢) belongs to
Fy.

(2) Thereisa j suchthat n < j<n+m—1 and f/(a) € Clos(U).

We can choose the K; such that K; N U contains an open set W . Taking
any p > 0, we chose the k; and the b; as in the proof of Lemma 1 for i < n.
Then, for each i > n, we choose k; and k] two disjoint compact subsets with
non-empty interiors included in Int(K;), b; and b; as in the proof of Lemma
1,and k; and k; in W . Then we modify the construction of the function g
in the following way:

o for 0<i<n+m-2,weput g=>b;;, on k; and g =>b;,, on kj;
e weput g=>5, on ky,_y and g=b, on k. _,.

As in the proof of Lemma 1, we obtain (g, ) € C(X)x X and 5 > 0 such
that J[(f, a), (g, b)] <e; andif (h,c) € C(X)x X verifies d[(g, b), (h, c)]
< n,then w(h, c) has at least two points in U, so (4, c) belongs to Fy . The
result follows.

RESULTS

Theorem 1. For (f, x) typical in C(X)x X, w(f, x) is a perfect set of Haus-
dorff dimension zero.
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Proof. Let E be the intersection of the Ey/, /» for n,m > 1 and Fy,,
(Up), being a countable base of open subsets of X . As the set of the triples
(n, m, p) is countable and according to Lemmas 1 and 2, E is residual.

Let (f,x) € E. For each (a, B), (f, x) € E, g; thus, w(f, x) can be
covered by a finite number of sets (k;); satisfying: for each i, d(k;) < B
and Y ,d(k;)* < 1. Therefore, according to the definition of the Hausdorff
dimension (see [2]), w(f, x) is of Hausdorff dimension zero.

For each open subset U of X, (f, x) € Fy; thus either w(f, x) has no
point in U or at least two. Therefore, w(f, x) does not contain an isolated
point. As w(f, x) is compact, w(f, x) is a perfect set.

So we have found E, a residual subset of C(X)x X , suchthatif (f, x) € E,
then w(f, x) is a perfect set of Hausdorff dimension zero. That is to say, for
(f, x) typical in C(X) x X, w(f, x) is a perfect set of Hausdorff dimension
zero.

Theorem 2. If f is typical in C(X), then, for x typical in X, w(f, x) isa
perfect set of Hausdorff dimension zero.

Proof. C(X) and X are two complete metric spaces and X is second count-
able. Let E be the residual subset of C(X) x X of the proof of Theorem 1.
According to the Kuratowski-Ulam theorem (see [4, p. 56]), there is a residual
subset F of C(X) such that for each f € F the section of E by f (ie.,
Er={x€X;(f, x) € E}) is a residual subset of X. If f€ F and x € Ef,
then (f, x) € E, so w(f, x) is a perfect set of Hausdorff dimension zero.
That is to say, if f is typical in C(X), then, for x typical in X, w(f, x) is
a perfect set of Hausdorff dimension zero.

Theorem 3. The function w is continuous at the typical point (f, x) of C(X)x
X.

Proof. Let a > 0 and G, be the set of those (f, x) € C(X) x X such that
there is a neighbourhood U of (f, x) on which dk[w(f, x), o(f', x')] < «
for each (f',x')eU.

Let (f,a) € C(X)x X and ¢ > 0. We begin as in the proof of Lemma 1.
We obtain the K; and then choose p > 0 such that mp < a. Then we obtain
the k; such that d(k,) + d(kny1) + -+ + d(knym-1) < a. Then we construct
(g,b) € C(X)x X and 5 > 0 as in the proof of Lemma 1. Let B be the
open ball of C(X) x X centred at (g, b) of radius n. If (h,c) € B, then
w(h,c) CkyUkpyU---Ukyim— and w(h,c)Nk;#@ for n<i<n+m-1.
Thus, if (h, c) and (h’, ¢’) belong to B, then dg[w(h, c), w(h', )] < a.

Let (h, c¢) € B. Since B is an open set, there is an open neighbourhood V
of (h,c) contained in B. If (4, ') € V, then dk[w(h,c), w(h', )] < a.
Hence (h, ¢) € G, . As in the proof of Lemma 1, it follows that G, contains
a dense, open subset of C(X) x X .

The intersection G of the G/, for n > 1 is residual. Let (f, x) € G.
Let o > 0; then (f, x) € G,, so there is a neighbourhood U of (f, x) such
that dx[w(f, x), w(f’, x')] < a for each (f’, x’) € U. This means that w
is continuous at the point (f, x). Therefore, w is continuous at any point of
G . The result follows.

Theorem 4. If f is typical in C(X), the function x — w(f, x) is continuous
at the typical point x of X .
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Proof. As in the proof of Theorem 2, the Kuratowski-Ulam theorem allows us
to deduce this result from the previous one.

REMARKS

Remark 1. According to Mandelbrot (see [3, p. 15]), a fractal is a set for which
the two dimensions used in this paper (and in [2]) are distinct. Hence the typical
limit set is not a fractal.

Remark 2. In chaotic sequences, the limit set has a sensitive dependence on
the initial condition. As for f typical in C(X), the function x — w(f, x) is
continuous at the typical point of X ; it follows that the sequence (f"(x)) is
not chaotic.
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