THE TEACHING OF MATHEMATICS 631

has explicit geometric meaning. (4) The entire argument can be summarized by the
statement, “Apply the Pythagorean Theorem to the right triangle of the figure.”

Our proof is essentially the proof given without motivation or interpretation in
[1, p. 61]. '
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From Experimentation to Proof

HervE LEHNING
13 rue Letellier, 75015 Paris, France

I particularly took notice of the following problem, proposed by A. Tissier in the
MoNTHLY [1]:

“Prove that the differential equation y’ = x — 1/y has a unique solution on
[0, o0) which is positive throughout and tends to zero at + cc.”

Before the appearance of personal computers, this kind of problem was hard to
assign to students because they found it difficult to see the family of solution curves
of a differential equation without solving it by quadratures. In this paper, I would
like to use this example to demonstrate an intuitive and experimental approach that
not only points to the result but also gives some ideas for the proof.

1. Research. The first idea is to sketch the family of curves by using adapted
software (see, for example [2]). More precisely, we sketch the solution curves of
initial value problems:

1
y=x- i y(0) =y, > 0.

By trying a number of values for y,, we quickly notice that if y, is too large, the
solution does not seem to be bounded and if y, is too small, it does not seem to be
defined in all of [0, co). More precisely, our successive trials are: 1, 2, 1.5, 1.2, 1.3,
and 1.25. You can see the result in FIGURE 1.

Intuitively, Tissier’s result seems correct; moreover the solution seems to be the
limit of two sequences; the first one is increasing and the other one is decreasing.
More precisely, we can define (in fact, for the time being, it is just a conjecture; we
shall have to prove it) two sequences of functions f, and g, (see FIGURE 2) that
seem to converge to the solution we are looking for.

We also notice that a curve (which is y = 1/x according to the study of the sign
of y' =x — 1/y) divides the first quadrant into regions where the solution is
increasing and decreasing.

See [3, 4, 5] for other examples of this kind of approach.

2. From research to proof. In fact, if we prove that these sequences are well
defined, it is easy to show that f, is decreasing and g, increasing (uniqueness of the
solution of the initial value problem); and then: |f, — g,| < 1/n because f, — g, is
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decreasing in [0, n]. We easily deduce that f, and g, converge uniformly to the
same function f. This function is continuous, so by writing the equation in integral
form, we can prove that it is a solution of the problem; what follows is easy because
if y is a solution of the equation in [0, o0):

FiG. 2

—if y(0) > f(0) then y(0) > £,(0) for an integer » and so according to the
uniqueness theorem, y > f, for each x so y is not bounded.
—if y(0) < f(0) then, for the same reason, y is not defined in the whole interval.

In order to remain close to the main subject that we would like to stress, we shall
not discuss here the search for the proof of the definition of f, and g, because it is
a classical question. As a matter of fact, it is sufficient to study the solutions of the
initial value problem in the open set defined by the inequalities y > 0, xy < 1,
which is easy, as these solutions are necessarily decreasing (nevertheless, please note
that in this case too, the experimental approach is useful).

3. Subtlety. At this step, we can begin proving. Nevertheless, we see that the
correct writing of the proof remains awkward since we must introduce some
questions of uniform convergence. The same idea can be used in order to obtain a
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more elementary proof. To each x > 0, we assign f(x) and g(x) as shown in
FIGURE 3,

Then we show that f is strictly decreasing (because there is a unique solution
curve passing through each point, see FIGURE 4) and positive, g is strictly increasing
and these two functions satisfy

0 <f(x)—g(x)<1/x foreach x.
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This allows us to conclude that f and g have a common limit / as x tends to
infinity. Then it is easy to show that the solution of the initial value problem at
(0, 1) is the solution we are looking for. Once these two often hidden, but essential,
steps are completed, we can begin to write the proof in its usual baldness. Here, we
shall present it in details in order to show that our method does not ruin the notion
of rigor.

4. Proof
4.1. First step: Generalities on the solutions of the equation.

(1) Let U be the open set of the plane defined by the inequalities: y > 0, xpy < 1.
The function (x, y) = x — 1/y is continuously differentiable in U so if (x,, y;)
belongs to U then the initial value problem:

1
Y =x- 5’ y(x) =y, (x,y)inU

has a unique maximal solution defined in an open interval (x,, x,) where x, and x,
can be infinite. Because x — 1/y < 0, y is decreasing on (x,, x,), s0: y > y, in
(x1,x0] and then: p’ > x — 1/y, in (x,, x,]. Integrating yields

1 1% 1V?
Yo—y=z—|lxg——| —|x——| |, whence
’ 2[(0 J’o) ( )’0)]
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If x, is finite, we deduce that y has a limit y, as x tends to x,. The solution y
being maximal, (x;, y;) does not belong to U so either y; = 0 or x, 3, = 1. But these
two cases must be excluded because on the one hand y, > y, and on the other hand,
if x;y, = 1, then (y — »,)/(x — x;) tends to 0 as x tends to x;. Now

1 1
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which leads to a contradiction when passing to the limit. Then x, = — c0.

In the same way, as x tends to x,, y has a finite limit y, since it is decreasing
and positive. If x, is infinite then y, = 0 since xy < 1; if x, is finite then either
Yo=00rx,y,=1

So, we have proved that if (x,, y;) belongs to U then the initial value problem

Plosixre ;: J"(xo):y()s (x,y)inU

has a unique maximal solution y defined in an open interval ( — oo, a) where a is
finite or infinite and y tends to 1/a or to 0 as x tends to a.

(i) Let V' be the open set defined by the inequalities: y > 0, xy > 1, and
(xg, ¥,) belong to V. In the same way, the initial value problem

1
y’=x_;! y(x(]):y()! (x’y)inV

has a unique maximal solution y defined in an open interval (a, o) where a > 0;
moreover, y tends to 1/ as x tends to a and to cc as x tends to oo.
(iii) For a > 0, the initial value problem
1 1

y’=x—;, y(a) = y>0

a

has a unique maximal solution y. The derivative at point a of the function
x — xy(x) is 1/a > 0 so there are points x, < a and x, > a that belong to the
interval of definition of y and such that (x,, y{x,)) belongs to U and (x,, y(x,)) to
V. Applying the results obtained in (i) and (ii) at these points, we show that y is
defined in (— co, o0).

(iv) So let W be the open set defined by the inequality: y > 0. If (x,, y,) belongs
to W, then the initial value problem y’ = x — 1/y, y(x;) = J,, y > 0 has a unique
maximal solution y defined in (— co, a) where g is finite or infinite. If a is finite or
if a is infinite and the graph does not intersect the curve whose equation is xy = 1,
the limit of y at a is 0; otherwise it is + co.

If y,, < y,, (for the same x,) then the two associated solutions verify y; < y, in
the common interval of definition; otherwise, according to the intermediate value
theorem, there would be an x such that y,(x) = y,(x) and so y, = y, according to
the uniqueness theorem, which is a contradiction.

4.2. Second step: definition of functions f and g. Let a > 0 and y, the solution
in {— o0, c0) of the initial value problem ' = x —1/y, y(a)=1/a, y > 0. We
define f(a) = y,(0). Then f maps (0, c0) into itself. Let a < b. Then y,(a) <
y.(a) =1/a since (a, y,(a)) belongs to U. Hence y, <y, so f(a) > f(b). We
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deduce that f is strictly decreasing. In the same way, in the open set defined by
xy — 1 < 0, the initial value problem
Y

,= 0=
X 5 x(0)=a

has a unique maximal solution x, defined in an interval containing y, > 0. The
derivative x does not vanish anywhere in (0, y;) because y/(xy — 1) < 0. Thus, x,
has an inverse function z which is the solution of the equation y' = x — 1/y in
[x.(¥o), a). According to the uniqueness theorem, the maximal solution z, of the
initial value problem y’ = x —1/y, y(x,(0)) = y,, (x, y) in U equals z in this
interval. So z,, is defined in [0, @) and tends to 0 as x tends to a. Let g(a) = z,(0).
In the same way, we show that g maps [0, o) into itself and is strictly increasing,
and that f(x) > g(x) for each x. Moreover,

b=
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Then y. — z/ > 0 and so f(a) — g(a) < 1/a.

4.3. Third step: conclusion. The function f is decreasing and positive, so it
converges to a limit /. Let y be the maximal solution of the initial value problem

1
y’=x—)—), y(0)=!! y>0;

y 1s defined in (— oo, ) since otherwise it would be one of the above functions z,
(see first step in (iv)). In the same way, for each x, (x, y(x)) belongs to U, since
otherwise it would be one of the functions y,, so y is positive and tends to zero as x
tends to co. It is the unique solution of our problem because if y is another one, let
b = y(0).

If b> [, then there is an a such that b > f(a) and then y > y,, so it is not
bounded.

If b <, then there is an a such that b < g(«) and then y < z,, so y is not
defined beyond a.

5. Postscript. I described this small example in such detail because I think we do
not distinguish enough between research and proofs in our teaching. Of course, we
all know that mathematical activity requires an experimental phase. But, too often,
we imitate Bourbaki’s way of writing [6], which hides the research and the trial
phases completely. So, some students see mathematics as a dead science whereas
mathematics is very much alive,
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